Learning Data Science Through Games and Applications
Data science is a fast developing science of extracting meaningful information from massive data for better decision-making. It is interdisciplinary by nature, involving statistics, computing, and domain knowledge. Important principles of data science will be elaborated through interactive games and real applications in this course.
Students will have a basic understanding of the essential components of data science as well as the basic computing skills needed to explore this field further independently. The fun, game-based introductions will engage students' interest in data science.
Sessions Offered
Session 1: June 23 - June 29
Course Fees
Format
Residential, Non-Credit
Related Courses
TBD
The course will be team-led by Professors Haim Bar and HaiYing Wang. Students taking this class will get the chance to:
- understand most important principles in data science;
- learn the basics of data science computing skills - data manipulation, visualization, and analysis;
- program in R to run simulations of games;
- practice on real applications with data from climate change to sports.
Schedule at a Glance
7am – 9am: Breakfast
9am – 12pm: Class
12pm – 1:30: Lunch
1:30pm – 4pm: Class or Workshop
2:40pm – 4:45pm: Closing Ceremony on Friday
5pm – 7pm: Dinner
7pm – 9pm: Social Programming
10:30pm: Room Checks
Meet the Teaching Team
Haim Bar is an Associate Professor in Statistics at the University of Connecticut. He received his Ph.D. in statistics from Cornell University in 2012. He received his M.Sc. in statistics in 2010 (Cornell University) and an M.Sc. in computer science in 2002 (Yale University). He received his bachelor's degree in mathematics (Cum Laude) in 1993, at the Hebrew University in Jerusalem.
His professional interests include statistical modeling, shrinkage estimation, high throughput applications in biology (e.g., genomics), Bayesian statistics, variable selection, and machine learning. From 1995 to 1997, he was with Motorola, Israel, as a computer programmer in the Wireless Access Systems Division. From 1997 until 2003 he worked for MicroPatent, LLC, where he held the position of Director of Software Development. In 2003 he moved to Ithaca, NY, and worked as a Principal Scientist at ATC-NY. Prior to coming to UConn, he worked at the Cornell Statistical Consulting Unit (CSCU) and the Department of Statistical Science at Cornell, as a consultant and lecturer.
HaiYing Wang is an Associate Professor in the Department of Statistics at the University of Connecticut. He was an Assistant Professor in the Department of Mathematics and Statistics at the University of New Hampshire from 2013 to 2017. He obtained his Ph.D. from the Department of Statistics at the University of Missouri in 2013, and his M.S. from the Academy of Mathematics and Systems Science, Chinese Academy of Sciences in 2006. His research interests include informative subdata selection for big data, model selection, model averaging, measurement error models, and semi-parametric regression.